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models affect impact on protected
groups?

DATASET

Domain: Loan Granting

e Simulated 100k applicant dataset from
301,536 TransUnion TransRisk scores
from 2003, originally used in Hardt et
al. 2016

e Sensitive feature: race (black or white)

e Labels: 0 (default) or 1 (repay)

IMPACT

e Impact: the effect of a model
prediction after its been made

e Variable affected: credit score

e Average change in credit score
measured by group

e True Positive outcome: +75 points

e False Positive outcome: -150 points

Fairness Metrics
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ML Models

{Decision Tree, Gaussian Naive Bayes,
Logistic Regression, Gradient Boosted
Trees}
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CONCLUSIONS

e “Fair” predictions can result in
worse impacts for advantaged and
disadvantaged groups

e Impact is more sensitive to the
fairness intervention method than
to ML model choice

FUTURE WORK

e Synthetic dataset variations for
different scenarios

e Statistical significance testing

e Variations of impact functions
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