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● Problem: bias in ML models
● Fairness != Positive Impacts
● Lack of consensus of robust and 

effective mitigation methods

● How do fairness interventions and ML 
models affect impact on protected 
groups?

Domain: Loan Granting
● Simulated 100k applicant dataset from 

301,536 TransUnion TransRisk scores 
from 2003, originally used in Hardt et 
al. 2016

● Sensitive feature: race (black or white)
● Labels: 0 (default) or 1 (repay)

● Synthetic dataset variations for 
different scenarios

● Statistical significance testing
● Variations of impact functions

● “Fair” predictions can result in 
worse impacts for advantaged and 
disadvantaged groups

● Impact is more sensitive to the 
fairness intervention method than 
to ML model choice
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● Most “fair” predictions fail to 
improve impact for the 
disadvantaged group 

● Improvement (credit score 
increase) for the disadvantaged 
group, when achieved, is quite 
modest

IMPACT
● Impact: the effect of a model 

prediction after its been made
● Variable affected: credit score
● Average change in credit score 

measured by group
● True Positive outcome: +75 points
● False Positive outcome: -150 points


